Do Macroeconomic Variables Have Any Impact On Stock Market? An Application of ARDL Approach to the Indonesian Market.

Irfan Afifah Mohd Zaki ^{1*}, Bushra Mohd Zaki², Roszi Naszariah Nasni Naseri³, Norfaezah Mohd Shahren⁴, and Nik Rozila Nik Mohd Masdek⁵

¹International Centre for Education in Islamic Finance, Kuala Lumpur irfanafifah@gmail.com

²Faculty of Business Management, Universiti Teknologi MARA Cawangan Melaka, Kampus Alor Gajah, Melaka bushra@melaka.uitm.edu.my

³Faculty of Business Management, Universiti Teknologi MARA Cawangan Melaka, Kampus Alor Gajah, Melaka roszinaseri@melaka.uitm.edu.my

⁴Faculty of Business Management, Universiti Teknologi MARA Cawangan Melaka, Kampus Alor Gajah, Melaka norfaezah949@melaka.uitm.edu.my

⁵Faculty of Business Management, Universiti Teknologi MARA Cawangan Melaka, Kampus Alor Gajah, Melaka

<u>nik_rozila@bdrmelaka.uitm.edu.my</u>

*Corresponding author

Abstract: This paper makes an attempt to examine the impact of selected macroeconomic variables on the stock market. Indonesia has taken as a case study. This study is a fresh attempt to investigate the relationship among the variables by applying 'Auto – Regressive Distributive Lag' model which has taken care of a major limitation of the conventional cointegrating tests in that they suffer from pre-test biases between the variables. The data uses in this study are monthly data of major macroeconomics variables which are inflation rate, interest rate, exchange rate and also the data of stock index. This study provide evidence that by applying ARDL techniques, there is a significance relationship among variables and macroeconomic variables seem to significantly impact the stock market of Indonesia. Inflation rate has found out to be strongest impact on stock market compared to other macroeconomic variables. Controlling these macroeconomic variables can provide stock market stability which is essential for the economy of Indonesia. This has an important policy implication for the national policy makers, researchers, corporate managers and regulators.

Keywords: Macroeconomics variables, Stock Market, ARDL Approach, Indonesian Market

Introduction

Indonesia is a member of G-20 major economies and is one of the emerging market economies of the world. Indonesia has been classified as a newly industrialized country and also has the largest economy in Southeast Asia. Besides that, Indonesia also gained international recognition regarding Indonesia's economy is the recent upgrades in the country's credit ratings by international financial services companies such as Standard & Poor's, Fitch Ratings and Moody's. The reasons for the upgrades that have been mentioned are resilient economic growth, low government debt and prudent fiscal management. In addition to that, those reasons are the key in attracting financial inflows into Indonesia which consists of both portfolio flows and (significant increasing) foreign direct investments (FDI). However, during the global financial crisis in 2008, the economy of Indonesia was impacted and causes a huge drop in Stock Index of Indonesia (IDX). Figure 1 below shows the graph of Stock Index of Indonesia:

Figure 1 – Stock Index of Indonesia (IDX)

Based on Figure 1, there is a huge drop of stock index in 2008 which is on the year that the global financial crisis happened. Drop in stock index will give a bad impression of the economy of a particular country. This is because, overall strength and health of a company are usually being indicated by the price of a company's shares. In general, the company and its management are considered to be doing a good job if a company's share price has continued to climb over time. This is same goes to the impression of investors towards the economy of a country. When the stock index is doing well then they will assume that the economy of that particular company is good and they will decided to invest in that country. Therefore, it is very important for the policymakers of Indonesia to ensure that their stock index is doing well by examining and controlling variables that will give an impact the stock prices. Thus, it would be very interesting and useful to investigate the impact of macroeconomic variables to stock index of Indonesia since it will give benefits to policymaker and also helps the country to prosper well. Therefore, this study attempt to examine the relationship between stock prices and macroeconomics variable and investigate which variables will impact other variable using Auto – Regressive Distributive Lag, ARDL approach.

Review of Literature

There are many previous studies provide an empirical evidence on the relationship between macroeconomics variables and stock index and this shows that macroeconomic variables has an important role and impact in the behavior of stock index.

Based on the study did by Habibullah and Baharumshah (2000), they used quarterly data for the sample period 1981:1 to 1994:4 and Toda and to establish the lead and lag relationship between Malaysian stock market and macroeconomics variable. Five macroeconomic variables are included in their study which is namely money supply, gross national product, price level (Consumer Price Index), interest rate (3-month Treasury bill rate) and exchange rate (real effective exchange rate). The results of their study showed that stock prices lead nominal income, the price level and the exchange rate, but money supply and interest rate lead stock prices. Moreover, there is a study did by Dimitrova (2005) uses monthly data for the United States and the United Kingdom over the period from January 1990 to August 2004 and uses a multivariate, open-economy, short-run model to test the hypothesis that in the short-run, un upward trend in the stock market may cause currency depreciation, whereas weak currency may cause decline in the stock market. Stock prices, exchange rates, domestic output, interest rates, current account balance, oil prices and foreign output are included in the model specification of his study. His study found that by using OLS regression analysis, there is a positive link between stock prices and exchange rates when stock prices are the lead variable and likely negative when exchange rates are the lead variable.

Other than that, there is a research done by Mukherjee and Naka (1995), where they used the Johansen's (1998) VECM and the relationship between the Japanese Stock Market and exchange rate, inflation, money supply, real economic activity, long-term government bond rate, and call money rate are being analyzed by the authors. A cointegrating relation is found in this study and that stock prices

contributed to this relation. Futhermore, Bhattacharya and Mukherjee (2002) applying the techniques of unit-root tests, cointegration and long-run Granger non-causality test proposed by Toda and Yamamoto (1995) in order to examine the causal relationships between the BSE Sensex and five macroeconomic variables The findings of the study indicated that there is no causal linkage between the stock prices and money supply, national income and interest rate. On the other hand, the index of industrial production found to leads the stock price and there exists a two-way causation between stock price and rate of inflation.

Besides that, Maysami and Koh (2000) did a research to examine the relationship between stock market and the macroeconomic variables and they concluded that such relationships do exist in Singapore. A cointegrating relation with changes in Singapore's stock market levels is formed by inflation, money supply growth, changes in short- and long-term interest rate and variations in exchange rate. Vuyyuri (2005) uses monthly observations from 1992 through December 2002 to examine the cointegrating relationship and the causality between the financial and the real sectors of the Indian economy. Interest rates, inflation rate, exchange rate, stock return, and real sector was proxied by industrial productivity are the financial variables used in the study. Johansen (1988) multivariate cointegration test supported the long-run equilibrium relationship between the financial sector and the real sector, and the Granger test showed that there is unidirectional Granger causality between the financial sector and real sector of the economy.

There is also a study done by Ibrahim and Aziz (2003) which estimated using vector auto-regression model to explore the relationship or linkages between stock prices and four macroeconomic variables for the case of Malaysia. A long-run relationship between these variables and the stock prices and substantial short-run interactions among them is found in the empirical results of the analysis. They also added that the stock market is playing somewhat predictive role for the macroeconomic variables. This is similar to the results found by Chong and Goh (2003) which in a further study concluded with the same results. The results showed that stock prices, economic activities, real interest rates and real money balances in Malaysia were linked in the long run both in the pre- and post-capital control sub periods.

Pal and Mittal (2011) examine the long-run relationship between the Indian capital markets and key macroeconomic variables such as interest rates, inflation rate, exchange rates and gross domestic savings (GDS) of Indian economy by using quarterly time series data which is from the period January 1995 to December 2008. The results of the study found out that the macroeconomic variables and Indian stock indices are cointegrated and this indicates a long-run relationship among them. In addition to that, the ECM shows that interest rate has a significant impact on S&P CNX Nifty only while the rate of inflation has a significant impact on both the BSE Sensex and the S&P CNX Nifty. On the other hand, significant impact is seen only on BSE Sensex in case of foreign exchange rate. It is observed that, both the BSE Sensex and the S&P CNX Nifty are insignificantly associated with the changing GDS. They conclude their study by stating that the capital markets indices are dependent on macroeconomic variables even though the same may not be statistically significant in all the cases. There is also a study conducted by Yusoff (2003) on the effects of monetary policy on the Malaysian stock market. His findings showed that there is cointegration between the monetary policy variables and stock prices, with a negative relation between inflation and stock prices and money supply. Additionally, there is also a research done by Ratanapakorn and Sharma (2007) where the data used for this study is from 1975 until 1999 and they adopted Granger causality approach in order to examine the long-term and short-term relationships between the US Stock Price Index (S&P 500) and six macroeconomic variables. They found out that, in the long-run relationship, there is positive relationship between stock prices and the money supply, industrial production, inflation, the exchange rate and the short-term interest rate while the stock prices are negatively related to the long-term interest rate. They stated that in the Granger causality sense, every macroeconomic variable causes the stock prices in the long-run but not in the short-run.

DATA, MODEL AND METHODOLOGY

Data

This study uses monthly time series data from January 2006 until January 2015 and the total numbers of observations are 119. All data of this study are collected from Datastream INCEIF for ten-year period. There are four important indicators in economy variables being examined in this study and also widely used as variables in other studies which are consumer price Index of Indonesia, interest rate of Indonesia, exchange rate of Indonesia and also the stock index of Indonesia.

Methodology

This study uses Autoregressive Distributive Lag (ARDL) approach from Pesaran and Pesaran (1997) and Pesaran et al. (2001) to empirically test the relationship of Indonesia Stock Index with other macroeconomic variables. ARDL approach can be applied to the variables regardless of the order of their integration whereby it manage to take care of the series that are totally I(0), purely I(1) or combination of both. ARDL approach has been chosen to be applied in this study since this study consist the combination of I(0) and I(1) which is combination of both stationary and non-stationary variables.

ARDL model is different than multivariate cointegration techniques such as Johansen and Juselius (1988) whereby ARDL model permits the cointegration relationship to be estimated by OLS once the lag order of the model is identified. In addition, this technique is also comparatively more robust in small or finite samples consisting of 30 to 80 observations (Pattichis, 1999; Mah, 2000). Moreover, the problems of endogeneity may also be experienced by the traditional cointegration methods which can be overcome by the ARDL method where it can differentiate between dependent and explanatory variables and eradicate the problems that may rises due to the presence of autocorrelation and endogeneity. Furthermore, a dynamic error correction model (ECM) can be derived from ARDL through a simple linear transformation (Banerjee *et al.* 1993). This ECM allows drawing outcome for LR estimates while other traditional cointegration techniques do not provide such types of inferences. The ECM integrates the short-run dynamics with the long-run equilibrium without losing long-run information (Pesaran and Shin, 1999) and also provides unbiased and efficient estimates. Therefore, the applications of ARDL approach in this study to analyze the relationship among IDX, CPI, INT, and IDR is clearly justified on the above explanations of the features of the ARDL technique over other standard cointegration techniques.

After the unit root test which is the stationarity test, the second step in the analysis is to "test the null hypothesis of no cointegration against the alternative hypothesis that there exists cointegration between all variables by using F-statistic. This test is sensitive to the number of lags employed on each first differenced variable (Bahmani-Oskooee, 1999)". The F-test, which has a non-standard distribution, is considered on the lagged levels of the variables in determining whether there is existence of a long-run relationship among the variables. Therefore, two bounds of critical values are obtained and the benchmark for I(0) variables are represented by the lower bounds critical values, while the upper bound critical values serve as benchmark for I(1) variables. According to the bound test, if the computed F-statistics exceeds the upper critical value then there is existence of cointegration and vice versa. However, if computed F-statistic falls within the two bounds of critical values, the variables must composed of level and first difference integrated series for possibility of cointegration. Next, in the next step, short run and long run linkage is examined by using the error

correction model (ECM). The error correction equation is used to find the adjustment speed to the equilibrium in the third stage.

3.3 Model

A simple model is used to examine the variations in stock index of Indonesia. There are many factors that are related and giving impact to stock index but this study will only focus on three main variables in economy and investigate whether they are giving impact to stock index or vice versa. The functional form of the model is as;

IDX = f(CPI, INT, IDR)

Where,

IDX= Stock Index of Indonesia

CPI= Consumer Price Index of Indonesia (Inflation rate)

INT= BI Rate Indonesia (Interest Rate)

IDR= Exchange Rate of Indonesian Rupiah to US Dollar

The following relationship is examined in order to investigate the impact of those macroeconomic variables on Stock Index of Indonesia:

LIDXt =
$$\alpha 0 + \alpha 1 LCPIt + \alpha 2 LINTt + \alpha 3 LIDRt + et(1)$$

Estimating the unrestricted error correction model version of the ARDL model for Stock Index of Indonesia and macroeconomic variables is involved in the ARDL approach to cointegration and below is the error correction version of the model:

LIDX, LCPI, LINT, LIDR

$$a_{LIDXP_{t}} = a_0 \sum_{i=1}^{8} b_i dLCPI_{t-i} + \sum_{i=1}^{7} c_i dLINT_{t-i} + \sum_{i=1}^{6} d_i dLINT_{t-i} + \mu_t$$

- Long - run relationship exists

 $\begin{array}{ll} H_0 \hbox{:}\; \delta_1 = \delta_2 = \delta_3 = 0 \\ H_1 \hbox{:}\; \delta_1 \neq \delta_2 \neq \delta_3 \neq 0 \end{array} \qquad \begin{array}{ll} \hbox{- Long - run relationship exists} \\ \hbox{- Long - run relationship does not exists} \end{array}$

EMPIRICAL RESULTS AND DISCUSSION

Unit Root Test

First of all, the data of all variables will be transform into log form to make the scale of the data become closer and remove the outliers. Then, the empirical testing begins with unit root test which is conducted to examine the stationarity of the variables before proceeding with the ARDL framework. There are two types of unit root tests that have been performed in this study which is Augmented Dickey Fuller (ADF) tests (1979) and Philip-Perron (PP) test. In this study, firstly the ADF test is performed on each variable in both log and differenced form then followed by PP test. The

differenced form for each variable used is created by taking the difference of their log forms. For example, DIDX = LIDX - LIDXt-1. The results of ADF test are summarized in Table 1 below.

LEVEL FORM OF VARIABLES								
VARIABLE	ADF	VALUE	T-STAT.	C.V.	RESULT			
LCPI	ADF(1)=SBC	58.9427	- 3.547	- 3.445	Stationary			
LCFI	ADF(5)=AIC	65.8285	- 3.930	- 3.483	Stationary			
LINT	ADF(1)=SBC	293.7621	- 2.720	- 3.445	Non-Stationary			
LINI	ADF(1)=AIC	299.2169	- 2.720	- 3.445	Non-Stationary			
LIDR	ADF(1)=SBC	229.1662	- 1.493	- 3.445	Non-Stationary			
LIDK	ADF(3)=AIC	236.2993	- 1.325	- 3.527	Non-Stationary			
LIDX	ADF(1)=SBC	145.0325	- 2.421	- 3.445	Non-Stationary			
LIDA	ADF(3)=AIC	152.3818	- 3.038	- 3.527	Non-Stationary			
	FIRST DIF	FERENCE	OF VAR	IABLES				
VARIABLE	ADF	VALUE	T-STAT.	C.V.	RESULT			
DCPI	ADF(1)=SBC	56.0261	- 7.116	- 2.816	Stationary			
DCF1	ADF(2)=AIC	60.2589	- 5.011	- 2.838	Stationary			
DINT	ADF(1)=SBC	288.2841	-4.0265	-2.8157	Stationary			
DINI	ADF(1)=AIC	292.3619	-4.0265	-2.8157	Stationary			
DIDR	ADF(1)=SBC	229.4890	- 8.251	- 2.816	Stationary			
	ADF(2)=AIC	234.0462	- 5.486	- 2.838	Stationary			
DIDX	ADF(2)=SBC	143.8207	- 4.417	- 1.913	Stationary			
	ADF(2)=AIC	147.8984	- 4.417	- 1.913	Stationary			

Table 1- ADF test

Based on Table 1 above, there is combination of stationary and non-stationary variables in level form while in first difference form, all variables are stationary. Next, PP test is performed and the results appear as in table 2 below:

LEVEL FORM OF VARIABLES							
VARIABLE	T-STAT.	C.V.	RESULT				
LCPI	-2.1952	-3.4502	Non-Stationary				
LINT	-1.5012	-3.4502	Non-Stationary				
LIDR	-1.3487	-3.4502	Non-Stationary				
LIDX	-1.8272	-3.4502	Non-Stationary				
F	IRST DIFFER	ENCE OF VA	RIABLES				
VARIABLE	T-STAT.	C.V.	RESULT				
DCPI	-6.8009	-2.9118	Stationary				
DNT	-4.3015	-2.9118	Stationary				
DIDR	-9.3759	-2.9118	Stationary				
DIDX	-7.9405	-2.9118	Stationary				

Table 2 – PP test

Based on Table 2 above, we can conclude that all variables are non-stationary in level form and stationary in first difference form. Since ADF test reveals the mixed of I(0) and I(1) while PP test shows all variables are I(1), this study can choose either to employ ARDL approach or to use Engle-Granger test and Johansen test. However, this study found that there is no cointegration of variables at all from the empirical results of Engle-Granger test and Johansen test. Hence, since the results of unit root test are not consistent and there is no cointegration found using Engle-Granger test and Johansen test, the author of this study decided to use ADF test results and proceed to ARDL approach to test the long run relationship among the variables.

VAR Order Selection

Before proceeding to the test of long-run relationship among variables using ARDL approach, the order of the vector auto regression (VAR), which is the number of lags to be used is determined and the results reveals in Table 3 below.

Optimal Order	AIC	SBC	Adjusted LR (p-Value)	c.v.
2	777.751			
1		749.581		
1			[.228]	5%

Table 3 – VAR Order Selection

By referring to Table 3 above, the results show that the highest value of AIC gives the optimal order of two, the highest value of SBC recommends the optimal order of one while the Adjusted LR test indicates that the p-value is higher than the critical value at the order of one which is the same results with SBC. The SBC is more concerned on over-parameter and i tends to choose lower order of lags. Therefore, this study decided to use the VAR order of 1.

Bound Test

Next, bound test will be carried out using ARDL approach to examine the existence of long-run relationship between variables Consequently, when the F-statistics of a variable is higher than the upper bound, hence there is a long-run relationship among variables and vice versa. The results of bound test are depicted in Table 4 below.

Variable	F-Stat	Upper Bound	Result
DCPI	4.4753[.002]	4.4604	Long-run relationship exists
DINT	2.2539[.069]	4.4604	Long-run relationship does not exists
DIDR	1.1893[.321]	4.4604	Long-run relationship does not exists
DIDX	1.0250[.399]	4.4604	Long-run relationship does not exists

Table 4 – Bound Test

According to table 4 above, the F-statistics of DCPI shows that the is a long run relationship exists. Hence, the variables which is CPI, INT,IDR and IDX are moving together in a particular direction and this shows that the relationship among the variables is not spurious. Since there is relationship between inflation rate, interest rate, exchange rate and stock index of Indonesia, the policy makers of Indonesia can encourage or discourage investment in stock market by adjusting the inflation rate, the exchange rate, as well as monitoring the interest rate. However, there is a need to know which variables are the leaders and which variables are the followers and this will be determined by the next step which is error correction model.

Error Correction Model

As mentioned before, cointegration reveals whether there is a long run relationship among the variables or not. Nonetheless, there could be a short-run deviation from the long-run equilibrium and cointegration does not unfold the process of short-run adjustment to bring about the long-run equilibrium. Therefore, there is a need to go for error correction model, ARDL approach in order to understand the adjustment process. This study performed the error correction model (ECM) based on AIC and SBC. The summarization of the results is shown in Table 5 below:

Error Correction Model Based on AIC										
ecm1(-1)	Coefficient	Standard Error	T-Ratio [Prob.]	c.v.	Result					
dLCPI	21341	.053131	-4.0166[.000]	5%	Endogenous					
dLINT	-0.029198	0.01614	-1.8090[.073]	5%	Exogenous					
dLIDR	-0.012265	0.01939	63255[.528]	5%	Exogenous					
dLIDX	-0.012957	0.01828370871[.480]		5%	Exogenous					
	Error Correction Model Based on SBC									
ecm1(-1)	Coefficient	Standard Error	T-Ratio [Prob.]	c.v.	Result					
dLCPI	-0.20015	0.048758	-4.1049[.000]	5%	Endogenous					
dLINT	-0.030903	0.016346	-1.8906[.061]	5%	Exogenous					
dLIDR	-0.021318	0.018706	-1.1396[.257]	5%	Exogenous					
dLIDX	-0.01238	0.018517	66855[.505]	5%	Exogenous					

Table 5 - Error Correction Model Based on AIC and SBC

The ECM will determine which variable is endogenous and exogenous. Based on both ECM test, inflation rate is found to be endogenous while other variables like interest rate, exchange rate and stock index are exogenous. Hence, this shows that the error-correction coefficient being significant and confirms our earlier findings of a significant long-run cointegrating relationship between the variables. From Table 5 it also reveals that the error correction coefficient of inflation rate is highly significant than other variables which is estimated at -0.21341 (0.000) for AIC and -0.20015 for SBC. This shows that it has the correct sign and implies a moderate speed of adjustment to equilibrium after a shock. However, the results of error correction model seems to be different from the previous literature where most of previous studies found out that inflation rate should be exogenous and stock index should be endogenous. In order to reconfirm the results of ECM based on AIC and SBC, Variance Decomposition Method (VDC) will be performed in order to determine which variables the most endogenous and which is the most exogenous.

Variance Decomposition (VDC)

This study applied Variance Decomposition technique in order to examine the relative degree of endogeneity or exogeneity of the variables. This study started out by applying orthogonalized VDCs and then followed by generalized VDC. Table 6 below summarized the results of orthogonalized VDCs:

Forecast at Horizon = 12 months (1 year), 24 months (2 years) and 36 months (3 years)

VARIABLES	HORIZON	LCPI	LINT	LIDR	LIDX	TOTAL	RANKING
LCPI	12	89.60%	7.28%	0.05%	3.07%	100.0%	1
LINT	12	21.73%	76.41%	0.17%	1.69%	100.0%	3
LIDR	12	1.55%	12.42%	77.93%	8.10%	100.0%	2
LIDX	12	4.61%	13.06%	30.72%	51.62%	100.0%	4
VARIABLES	HORIZON	LCPI	LINT	LIDR	LIDX	TOTAL	RANKING
LCPI	24	89.60%	7.28%	0.05%	3.07%	100.0%	1
LINT	24	21.73%	76.41%	0.17%	1.69%	100.0%	3
LIDR	24	1.55%	12.42%	77.92%	8.10%	100.0%	2
LIDX	24	4.61%	13.06%	30.72%	51.62%	100.0%	4
VARIABLES	HORIZON	LCPI	LINT	LIDR	LIDX	TOTAL	RANKING
LCPI	36	89.60%	7.28%	0.05%	3.07%	100.0%	1
LINT	36	21.73%	76.41%	0.17%	1.69%	100.0%	3
LIDR	36	1.55%	12.42%	77.92%	8.10%	100.0%	2
LIDX	36	4.61%	13.06%	30.72%	51.62%	100.0%	4

Table 6 – Orthogonalized VDC

Based on Table 6, forecasted horizon 12 months, 24 months and 36 months showed the same results across the horizon where the most exogenous variable is inflation rate then followed by exchange rate, interest rate and the stock index. This result is contradicts to the results obtained from error correction model. In addition, the contributions of own shocks towards explaining the forecast error variance of each variable for forecast horizon of 12 months, 24 months and 36 months are also the same where the inflation rate is 89.6%, interest rate is 76.41%, exchange rate is 77.92% and stock index is 51.62. Therefore, stock index is the variable that is the most little explained by its own shocks and it is the most dependent variable. This also shows that stock index is a follower and will be most impacted by inflation rate, interest rate and exchange rate. However, the orthogonalized VDCs will assumes that when a particular variable is shocked, all other variables are "switched off" and the first variable would report the highest percentage and as such would be specified as the most exogenous variable. Therefore, this study decided to use and applied generalized results which are obtained as follows:

VARIABLE	HORIZON	LCPI	LINT	LIDR	LIDX	TOTAL	SELF-DEP	RANKING
LCPI	12	81.19%	16.19%	0.11%	2.51%	100.00%	81.19%	1
LINT	12	18.37%	78.83%	0.37%	2.43%	100.00%	78.83%	2
LIDR	12	1.21%	9.95%	61.48%	27.36%	100.00%	61.48%	4
LIDX	12	3.51%	11.24%	23.13%	62.12%	100.00%	62.12%	3
VARIABLE	HORIZON	LCPI	LINT	LIDR	LIDX	TOTAL	SELF-DEP	RANKING
LCPI	24	81.19%	16.19%	0.11%	2.51%	100.00%	81.19%	1
LINT	24	18.37%	78.83%	0.37%	2.43%	100.00%	78.83%	2
LIDR	24	1.21%	9.95%	61.48%	27.36%	100.00%	61.48%	4
LIDX	24	3.51%	11.24%	23.13%	62.12%	100.00%	62.12%	3
VARIABLE	HORIZON	LCPI	LINT	LIDR	LIDX	TOTAL	SELF-DEP	RANKING
LCPI	36	81.19%	16.19%	0.11%	2.51%	100.00%	81.19%	1
LINT	36	18.37%	78.83%	0.37%	2.43%	100.00%	78.83%	2
LIDR	36	1.21%	9.95%	61.48%	27.36%	100.00%	61.48%	4
LIDX	36	3.51%	11.24%	23.13%	62.12%	100.00%	62.12%	3

Table 7 – Generalized VDC

From the above results, exchange rate is ranked in Generalized VDCs as number four which is shows that it is the most endogenous variable while the most exogenous variable is inflation rate then followed by interest rate and stock index. However, this result contradicts earlier VECM result which indicate that stock price is exogenous and slightly different to the Orthogonalized VDCs, which determine stock index as the most endogenous variable. The contributions of own shocks towards explaining the forecast error variance of each variable are the same and no change for forecast horizon of 12 months, 24 months and 36 months where the inflation rate is 81.19%, interest rate is 78.83%, exchange rate is 61.48% and stock index is 62.12%. Therefore, stock index will be most impacted by inflation and interest rate while exchange rate will be most impacted by inflation rate, interest rate and stock index. However, generalized VDC results also contradict with the results from error correction model which found out that inflation rate is endogenous. In this case, this study decided to use the results from generalized VDC since VDC can examine the relative endogeneity and exogenity. The above results are very important for the policy makers of Indonesia and investors because it will help them to make the decision. This will be explained further in section 5 which is the section for implications to policy makers.

CONCLUSION

In conclusion, this study revisit the three researches question posed at the beginning of the study. Based on the above quantitative analysis, we found the answers as follows:

- 1. There is a significance relationship between stock index of Indonesia and the macroeconomics variable. (inflation rate, interest rate and also exchange rate)
- 2. The variable that will give the most impact to the stock index of Indonesia is inflation rate then followed by interest rate and exchange rate. Therefore, policymaker should control inflation rate first then followed by interest rate and exchange rate in order to stabilize the stock market of Indonesia.
- 3. Stock index is a not the leader and it is being leaded by other macroeconomic variables which is inflation rate, interest rate and exchange rate. Hence, policymakers can ensure the prosperity and stability of stock market by controlling the aforementioned macroeconomic variables.

LIMITATIONS OF STUDY

This study has several limitations that should be mentioned to ensure future studies can be built on this. One of the critical limitations of this study is that it has lack of sufficient time to examine the relationship between different combinations of the variables and this study only uses monthly data for a period of 10- years. It is advisable for other researchers who are interested to continue this study to uses a longer period of data since more observations would have yielded a more refined result.

REFERENCES

Bhattacharya, B., & Mukherjee, J. (2002). The nature of the causal relationship between stockmarket and macroeconomic aggregates in India: An empirical analysis. In 4th Annual Conference on Mone and Finance, Mumbai.

Chong CS, Goh KL (2003). Linkages of economic activity, stock prices and monetary policy: the case of Malaysia.

Dimitrova, D. (2005). The relationship between exchange rates and stock prices: Studied in amultivariate model. Issues in Political Economy, 14(1), 3-9.

Ibrahim, M and Aziz, PP. (2003). Macroeconomic Variables and the Malaysian Equity Market: aView Through Rolling Subsamples". Journal of Economic Studies, Vol. 30 No. 1, 6-27.

Mukherjee, T. K. and Naka, A. (1995), Dynamic Relations between Macroeconomic Variables and the Japanese Stock Market: An Application of a Vector Error- Correction Model, Journal of Empirical Research, 18, 223-237.

Maysami, R. C. and Koh, T. S. (2000), A Vector Error Correction Model of the Singapore StockMarket, International Review of Economics and Finance, 9, 79-156.

Pal, K. and Mittal, R.(2011) Impact of macroeconomic indicators on Indian capital marketsJournal of Risk Finance, Volume: 12 Issue: 2.

Ratanapakorn, O. and Sharma, S. C. (2007). Dynamic analysis between the US stock returns and the macroeconomic variables. Applied Financial Economics, 17, 369–377.

Vuyyuri, S. (2005). Relationship between real and financial variables in India: a cointegrationanalysis. Available at SSRN 711541.

Yusof, R. (2003). The Link Between Monetary Policy And Stock market Behaviour: An Empirical Investigation on Malaysia 1977-2000. UIAM: PhD Thesis.